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Abstract. The excitation function and angular distributions of elastic α-particle scattering on 28Si have
been measured in the laboratory energy range 6–28 MeV using a backscattering technique on a thick target,
yielding a continuous energy distribution. More than 200 narrow states are observed, with widths in the
range ∼ 30–100 keV at excitation energies E∗ = 13–32 MeV. Angular distributions at backward angles
were measured, and angular momentum values of more than 83 states have been deduced. The analysis
gives spin-parities Jπ, α-partial widths Γα and reduced widths of the narrow high-lying resonant states in
32S. The experimentally observed states display both the negative- and the positive-parity rotational-like
sequences with seemingly no parity splitting, a finding which is at variance with most potential-model
predictions. The deduced effective moment of inertia indicates a more extended structure than the ground-
state configuration. The observed strength of each �-value is analyzed in terms of an underlying split
doorway state of Lorentzian form, which yields an interpretation as fragmented rotational α+ 28Si states.

PACS. 21.10.Hw Spin, parity, and isobaric spin – 24.10.-i Nuclear-reaction models and methods – 24.30.-v
Resonance reactions – 25.55.-e 3H-, 3He-, and 4He-induced reactions

1 Introduction

There is an increasing interest in studying high-resolution
elastic α-particle scattering in the mass range A ∼ 20–40.
The reason for this is the observation of narrow cluster
structures, with Γα < 100 keV, at excitation energies of
tens of MeV [1], where potential scattering predicts struc-
tures with Γ ∼ 3−5 MeV, but where the density of states
is less than the density of compound-nucleus states.

In the A ∼ 20–40 mass region α-particle elastic-
scattering experiments range from a comprehensive study
of 20Ne states in [2], of excited states in 24,26Mg [3,4],
to narrow states observed in α+ 40Ca [5]. The α-particle
scattering on 28Si has been studied at lower energies and
short energy intervals in [6–11] and at higher energies but
with lower resolution in [12–14]. The α-particle transfer
reaction (6Li, dα) has been used for 28Si, 32S and 36Ar
in [15–17], and in several works on 40Ca, see [18] and ref-
erences therein.

As a result of all investigations prior to this work the
excitation functions for elastic α-scattering by 28Si, pro-

a e-mail: kkallman@abo.fi
b Present address: Swedish Polytechnic, FIN-65200 Vasa,

Finland.

ducing states in 32S, in the present energy region have only
been reported in fairly limited manner. In an early study
at our laboratory, cf. [19], it was shown that over a broad
energy interval a large number of individual highly ex-
cited, but very narrow states (i.e. Γ ∼ 30–80 keV), with
unambiguous angular momenta could be identified, pro-
vided a high-resolution technique could be used. However,
this implied sampling the excitation function in narrow
energy steps, which is very time consuming. A method to
cover the excitation function over a large energy interval,
but maintaining the good resolution, was developed [20].
This method was also used in a work on the low-energy
scattering, i.e. a few MeV above the Coulomb barrier of
α+ 28Si [9], and it is discussed extensively in [21].

The present work reports on a high-resolution study
of elastic α-particle scattering on 28Si. Parts of our data
have been presented previously, cf. [9,16,22–25]. In this
work we show that a rather simple method, instead of
the full R-matrix approach, can be efficiently used to gain
first insight in the resonance structure. Section 2 will de-
scribe the experiments performed, and features of the data
reduction, and in the last section we discuss the present
results.
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2 Experimental procedure and results

2.1 Energy spectra and excitation function

The elastic-scattering excitation functions and angular
distributions were measured at the Åbo Akademi Accel-
erator Laboratory using the K-20 isochronous cyclotron
in the particle energy range 12.0–19.6 MeV, at Uppsala
University in the range of 6.5–12.8 MeV beam energy us-
ing beams from the Tandem van de Graaff accelerator at
the Svedberg Laboratory, and at Oslo University in the α-
particle energy range 19–30 MeV using the K-35 cyclotron.
The beam energies were analyzed with a 105◦ analyzing
magnet at Åbo Akademi, with a 90◦ magnet in Uppsala,
and with a 50◦ analyzing magnet at Oslo University. The
experimentally deduced beam energy widths were about
20, 10 and 50 keV, respectively. Consequently the set-ups
allow studies of energetically narrow structures. The tar-
get was a 10 µm thick plate of natural silicon. The isotope
abundances are 28Si 92.2, 29Si 4.7 and 30Si 3.1%, respec-
tively. Since in addition to the low abundances the (α, α0)
cross-sections on 29,30Si are smaller by factors of 5 and 3,
respectively [24,26,27], their contributions are negligible
(down to about 1%). Further, the (α, p) cross-sections are
small [22,28] and the detectors were biased to be almost
transparent to protons.

The experiments were performed using our novel thick-
target method, see [20], to measure excitation functions
and angular distributions in α-particle scattering. It al-
lows measuring the elastic-scattering excitation function
in fairly large energy steps, and continuously in energy.
The absolute restriction in beam energy step length is the
location of the first-excited state, in the case of 28Si the
2+ state at 1.78 MeV. However, for total α-particle path
lengths (path in and path out) in the target material of
several hundreds of keV, and this also depends on beam
energy, straggling becomes important, and will smear the
structures under study. The path length out is, in addi-
tion, depending on the scattering angle. This effect there-
fore prohibits beam energy steps larger than ∼ 400 keV.
With the target at 45◦ with respect to the beam direction,
the broadening is about 2 keV per degree opening angle
in the backward direction, whereas it is 30 keV per degree
at 90◦.

The partial spectra were corrected for energy loss
in the target and matched by normalizing the intensity,
see [20]. The excitation function of α+ 28Si so obtained is
shown in fig. 1, as recorded by the detector at 173◦. The
low-energy part reported in [9], and a high-energy exci-
tation function from [29] are included for completeness.
The intrinsic detector resolution was about 20 keV, which
means that observed experimental widths of about 40 keV
may indeed be narrower (even less than 30 keV).

The excitation functions were measured with a set
of seven detectors in three settings, giving 21 angular-
distribution points in the angle range 107◦–173◦. The indi-
vidual spectra were recorded at 3◦ angle intervals, and the
collimators used correspond to an angle width of ∆θ ∼ 2◦.
In fig. 2 we show the backward-angle spectrum in compar-
ison with the summed excitation function from an angu-

Fig. 1. Excitation function of the reaction α + 28Si, in the
energy range Eα ∼ 3.6–30.0 MeV, corresponding to an excita-
tion energy in the intermediate system 32S of Eexc = 9.6–33.2
MeV. The excitation function is recorded at a laboratory an-
gle of 173◦ with respect to the beam direction. The energy
range Eα ∼ 6.5–19.6 MeV is measured at the Tandem van de
Graaff accelerator of the The Svedberg Laboratory in Uppsala
and at the Turku cyclotron. Included are also the low-energy
part, Eα = 3.6–5.8 MeV (i.e. Eexc = 9.6–12.2 MeV) from [9],
and the high-energy part Eα = 19–30 MeV (Eexc = 23.6–33.2
MeV), recorded at the Oslo cyclotron [29]. Some particular re-
action thresholds are indicated by arrows. It is interesting to
notice that no appreciable changes in the elastic cross-section
occur at or above these energy values.

Fig. 2. Upper panel: backward-angle (θlab = 173◦) excitation
function, cross-section in mb/sr. Lower panel: angle-summed
(θlab = 107◦–173◦) excitation function, in arbitrary units. The
comparison illustrates that the observed structures are due to
resonances, not fluctuations. A maintained excitation struc-
ture in the “integrated” spectrum indicates that the structure
persists in the forward-angle interval and is not related with a
fluctuating overlap of compound statistical resonances.
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Fig. 3. Energy-angle matrices ECM × θCM extracted for four energy regions. It should be noted that the smooth energy and
angle behaviors are not due to a model plot but the continuous energy is due to the experimental method, and only a splining
of the ∆θ ∼ 3◦ angular data has been done.

lar interval of 107◦–173◦. It should be noted how similar
these two spectra are. The fact that there is some filling-in
is mainly due to kinematic broadening at increasing angle
off the beam direction. This feature is a signature that the
observed states are not fluctuations but real resonances.
This division in “backward intensity” and “integrated in-
tensity” (which is, in fact, a sum of the in-plane intensity,
see below for a discussion of the properties of the energy-
angle ECM × θCM matrices) is of vital importance for the
discussion of interference of partial waves.

2.2 Energy-angle matrices

The individual measured energy spectra for different an-
gles were energy shifted and merged into two-dimensional
ECM × θCM matrices. Examples of such energy-angle ma-
trices are shown in fig. 3. (It should be noted, that project-
ing one such matrix on its energy axis yields a spectrum
like that of the lower panel of fig. 2.) The four panels show
parts of the total matrix with increasing energy. If there
is low intensity observed in backward angles this may be
due to the absence of scattering strength, or due to de-
structive interference of two (or more) partial waves. If
however, there is in addition only a low in-plane intensity,
i.e. low intensity in all angles, this is a sign that at this
specific energy there is no resonance strength, only a low
“background”. This is illustrated in fig. 2, where it is easily

recognized that, e.g., at energies about 8.0, 8.4, 8.8, 9.1,
10.5, 12.0, etc. there is only “low-background” scattering,
whereas in between there is a clear grouping of narrow res-
onances. The way we are going to use this procedure below
presumes that the peaks are stronger than the potential-
scattering background, so that the angular distribution is
dominated by the �-value of the resonant state. It seems
plausible that this requirement is fulfilled. The partial fill-
in in the angle-integrated spectrum is mostly due to kine-
matic broadening in smaller angles [20,21], otherwise the
dips should be even lower. This effect is explained in detail
in [20].

Since the resonances are reasonably well separated and
appear as peaks above a background, cf. figs. 1 and 2
(upper panel), the excitation function was analyzed by
fitting individual peaks with individual widths together
with a background in the 173◦ spectrum. In this man-
ner resonance energies and widths were extracted. Such
a procedure should be well substantiated for separating
out peaks which are fairly much higher than the back-
ground, and thus not suffering from interference in the
backward angles, as seems to be the fact at energies larger
than about 6 MeV. For lower energies, and down to the
Coulomb barrier where Rutherford scattering dominates,
the background interference is relatively stronger and here
the data must be fitted including the background interfer-
ence [9].
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The total number of peaks analyzed is this way is al-
most 200 for the energy interval in consideration. Those
with uniquely determined spin values (see below) are listed
in table 1, with their positions and widths. The evolution
of the experimental widths with increasing energy is such
that there is a smooth increase in the mean widths from
about 30 keV at 6 MeV, to some 70 keV at 20 MeV. This
increase must be assigned to the resonant structures them-
selves, since the energy straggling in the target decreases
with increasing beam energy and the relative beam energy
width should stay constant [20].

2.3 Angular distributions

In the experimental two-dimensional data sets, illustrated
in fig. 3, one can perform an angular-distribution analysis
which is not restricted to preselected beam energy values
of energy, rather, it allows slicing in energy at any interval.
The slices were kept very narrow, typically 5–10 keV, in
order to minimize the overlap with the wings of adjacent
resonances.

The extraction of �-values is done through slicing the
matrix at certain energies, on the resonances determined
from fits at backward angles, and projecting these an-
gular distributions which are then compared to squared
Legendre polynomials. If there is good agreement, the �-
value can be determined unambiguously. This is, in fact,
the one-level approximation of the R-matrix theory. The
present procedure is substantiated for reasonably well-
separated and/or narrow resonances, which is often the
case (see table 1), or for narrow slices projected at the res-
onance maximum, which minimizes the influence of wings
from adjacent states.

This way of slicing was done for all peaks found in the
analysis of the 173◦ spectrum, and for each case the width
of the energy bin was chosen so as to avoid overlapping
of adjacent resonances. For each energy, using the cross-
section and the angular momentum of the resonance, one
can get the characteristics, Γα/Γtot, of the corresponding
state by use of the Breit-Wigner formula

dσ
dΩ

=
1
k2

(2�+ 1)2
Γα

Γtot
· P 2

� (cos θ), (1)

where the angular dependence, given by the squared Leg-
endre polynomial, determines the �-value. Some examples
of angular distributions so obtained are given in fig. 4.
This comparison gives the dominating �-values for each
resonance, and are the ones listed in table 1.

Some uncertainties are present when using a single
squared Legendre polynomial P 2

� (cos θ) for deducing the
�-value. First, there may be two overlapping resonances,
however, the expression is relatively insensitive to small
admixtures. Second, the wings of adjacent resonances con-
tribute, but at a distance of ∼ 3Γ the distortion is only
marginal. For a resonance width of Γ ∼ 30 keV, at a dis-
tance of 80 keV, the influence is small. Third, the small iso-
tope admixture could distort the properties of weaker res-
onances. Fourth, one should include the Coulomb ampli-
tude. However, it is very small for our energies, ∼ 5 mb/sr

Fig. 4. Examples of experimental elastic α-particle angular
distributions on 28Si from the thick-target runs at various ECM

energies as shown in each plot. The spectra are obtained by
slicing/gating in the ECM × θCM matrices shown in fig. 3. The
theoretical curves represent |P�(cos θ)|2 Legendre polynomials.

Fig. 5. Excitation function of the reaction α + 28Si for the
energy range Eα = 6.5–19.6 MeV. The indicated numbers are
the resonance �-values extracted as discussed in the text.

or less and is neglected, especially since resonances with
clear �-values are fairly strong, some 50–500 mb/sr. Fur-
ther, with increasing angle there is an increasing fill-in
effect at minima (and lowering of peak values). This is an
effect of kinematic broadening, compare to, e.g., panels c)
and d) of fig. 3. But as is seen, at angles close to 180◦ the
agreement is good. Finally, admixtures of three different
�-values in one resonance may safely be excluded. They
must be very occasional, and the trend, see fig. 5, clearly
indicates successive �-values with increasing energies, and
not randomly appearing ones.
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Table 1. Properties of resonances observed in α + 28Si elastic scattering at θlab = 173◦. The columns represent the resonance
energy Eexc, laboratory energy Elab, �-value, total width Γ , α-width Γα, relative width Γα/Γ , reduced width γ2

α and the
percentage of the Wigner limit, γ2

α/γ2
W.

Eexc Elab � Γ Γα Γα/Γ γ2
α γ2

α/γ2
W

MeV MeV keV keV %

12.930 6.834 3 29± 5 16± 10 0.54 16± 10 2.7
13.086 7.012 3 26± 7 6± 4 0.24 5± 3 0.9
13.268 7.220 3 49± 3 17.9± 1.2 0.37 12.7± 0.8 2.1
13.370 7.337 3 28.8± 1.3 12.8± 0.8 0.44 8.6± 0.5 1.3
13.490 7.474 3 54± 5 28± 3 0.52 16.1± 1.7 2.6
13.588 7.586 3 18± 4 8± 2 0.42 4.0± 1.2 0.7
13.655 7.663 3 74± 2 50± 2 0.67 24.5± 0.9 4.0
13.696 7.710 4 23.6± 0.9 12.3± 0.6 0.52 14.1± 0.7 2.3
13.807 7.836 3 47.4± 0.8 27.9± 1.0 1.01 20.6± 0.4 3.4
13.870 7.908 5 22.0± 1.1 11.0± 0.6 0.50 10.5± 0.6 1.7
13.896 7.938 4 22.4± 1.0 8.8± 0.5 0.39 26.2± 1.4 4.3
14.070 8.137 3 29.6± 0.7 27.3± 0.8 0.92 9.6± 0.3 1.6
14.131 8.207 5 15.2± 0.6 6.6± 0.3 0.44 15.0± 0.7 2.4
14.177 8.259 4 42.0± 1.1 25.4± 1.1 0.61 18.1± 0.8 2.9
14.234 8.324 3 89± 2 69± 2 0.77 21.5± 0.5 3.5
14.429 8.547 3 40± 2 41± 2 1.02 11.8± 0.6 1.8
14.542 8.676 4 84.5± 1.1 66± 2 0.78 34.4± 0.8 5.6
14.633 8.780 5 7.0± 0.9 2.0± 0.3 0.28 2.6± 0.4 0.4
14.832 9.008 4 37.5± 0.5 33.2± 0.6 0.89 13.9± 0.3 2.3
14.878 9.060 4 25.5± 0.7 14.8± 0.5 0.58 6.0± 0.2 1.0
15.025 9.229 4 30.5± 1.1 21± 2 0.68 7.6± 0.6 1.2
15.116 9.332 5 36± 2 15.8± 1.4 0.44 13.6± 1.2 2.2
15.230 9.463 4 18± 2 5.1± 0.7 0.27 1.6± 0.2 0.3
15.344 9.593 5 45.9± 1.0 23.0± 0.7 0.50 16.5± 0.5 2.7
15.385 9.640 5 24.5± 0.6 13.6± 0.4 0.55 9.4± 0.3 1.5
15.441 9.704 5 34.3± 0.3 24.7± 0.5 0.72 16.4± 0.4 2.7
15.527 9.802 5 46.8± 1.3 24.8± 0.9 0.53 15.4± 0.6 2.5
15.631 9.921 5 29.9± 0.3 27.9± 0.4 0.93 16.0± 0.2 2.6
15.686 9.984 5 35.9± 1.0 16.7± 0.7 0.47 9.3± 0.4 1.5
15.758 10.066 6 41.0± 0.9 20.0± 0.6 0.49 32.2± 1.0 5.2
15.847 10.168 4 47± 2 33± 2 0.71 7.6± 0.6 1.2
15.894 10.222 5 28.0± 0.8 18.5± 0.7 0.66 8.8± 0.3 1.4
15.955 10.291 6 21.6± 0.5 14.4± 0.4 0.67 19.5± 0.6 3.2
16.052 10.402 5 54± 2 28± 2 0.52 12.0± 0.7 2.0
16.243 10.620 6 41.3± 0.8 18.8± 0.5 0.45 20.1± 0.5 3.3
16.341 10.732 5 86± 2 47.1± 1.4 0.55 17.1± 0.5 2.8
16.495 10.908 5 64± 3 39± 3 0.61 12.7± 1.0 2.1
16.615 11.046 6 60± 2 38± 2 0.63 30.3± 1.2 4.9
16.691 11.132 5 23± 2 12± 3 0.54 3.7± 0.8 0.6
16.747 11.197 6 45± 2 23± 3 0.52 17± 2 2.8
16.795 11.251 6 76± 6 41± 3 0.54 29± 2 4.8
16.866 11.333 6 38.1± 0.6 27.8± 0.6 0.73 18.8± 0.4 3.1
16.920 11.394 6 35.0± 0.8 14.4± 0.5 0.41 9.4± 0.3 1.5
16.978 11.461 6 47± 3 18± 2 0.38 11.0± 1.0 1.8
17.080 11.577 6 58.0± 1.4 32.5± 1.3 0.56 19.1± 0.7 3.1
17.250 11.771 5 92± 14 96± 27 1.04 22± 6 3.6
17.393 11.935 7 35± 6 20± 17 0.57 31± 26 5.0
17.656 12.235 7 36± 2 16.4± 0.8 0.45 20.6± 1.0 3.3
17.688 12.272 7 26± 2 10.8± 1.0 0.42 13.2± 1.2 2.1
17.868 12.478 6 82± 7 35± 3 0.43 13.1± 1.1 2.1
17.934 12.553 7 48± 4 20± 2 0.41 20± 2 3.3
18.042 12.677 7 44± 2 26.4± 1.2 0.61 25.3± 1.2 4.1
18.213 12.872 7 76± 7 28± 7 0.37 24± 6 4.0
18.458 13.152 7 66± 5 15.2± 1.2 0.23 11.2± 0.9 1.8
18.554 13.262 7 73.6± 1.4 28.3± 0.7 0.38 19.7± 0.5 3.2
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Table 1. (Continued.)

Eexc Elab � Γexp Γα Γα/Γ γ2
α γ2

α/γ2
W

MeV MeV keV keV %

18.660 13.383 7 74± 5 38± 3 0.52 25± 2 4.1
18.736 13.470 7 75± 6 29± 2 0.39 18± 2 2.9
18.803 13.546 8 46± 3 12.9± 1.0 0.28 27± 2 4.4
18.986 13.755 8 34± 2 11.9± 1.0 0.35 22± 2 3.6
19.119 13.907 8 84± 7 23± 4 0.27 38± 6 6.2
19.248 14.055 8 54± 10 15± 3 0.27 23± 5 3.7
19.442 14.276 7 72± 2 25.4± 0.7 0.36 10.9± 0.3 1.8
19.551 14.401 8 75± 18 18± 4 0.24 22± 6 3.7
19.653 14.518 8 54± 2 31.6± 1.1 0.58 37.4± 1.3 6.1
19.747 14.625 8 79± 9 20± 3 0.25 22± 3 3.7
20.275 15.228 7 44± 4 15.1± 1.0 0.34 4.5± 0.3 0.7
20.381 15.350 8 72± 17 24± 10 0.33 18± 8 3.0
20.485 15.468 8 84± 4 20.8± 1.1 0.25 15.2± 0.8 2.5
20.703 15.718 8 37± 4 6.7± 1.0 0.18 4.4± 0.7 0.7
20.835 15.869 8 59± 2 16.5± 0.8 0.29 10.1± 0.5 1.6
21.212 16.299 9 69± 3 15.0± 0.8 0.22 25.6± 1.3 4.2
21.395 16.509 9 70± 5 11.2± 0.8 0.16 17.3± 1.2 2.8
21.457 16.579 9 45± 4 6.2± 0.7 0.14 9.2± 1.0 1.5
21.532 16.665 9 39± 10 6± 2 0.16 9± 6 1.5
21.783 16.952 8 53± 2 22.4± 0.8 0.42 8.9± 0.3 1.4
22.135 17.354 9 74± 4 14.9± 1.1 0.20 15.3± 1.2 2.5
22.205 17.434 9 54± 9 12± 4 0.22 12± 4 1.9
22.308 17.552 9 47± 14 10± 7 0.21 9± 6 1.5
22.355 17.606 8 24± 5 4.6± 1.3 0.19 1.4± 0.4 0.2
22.846 18.167 9 51± 5 8.3± 1.1 0.16 5.9± 0.8 1.0
22.964 18.395 10 58± 3 8.1± 0.6 0.14 20.3± 1.4 3.3
23.226 18.601 9 74± 16 14± 3 0.19 8± 2 1.3
23.296 18.681 9 52± 7 10± 2 0.20 6.3± 1.3 1.0
23.493 18.906 10 93± 12 17± 2 0.18 31± 4 5.1

In table 1 we have thus evaluated values only for res-
onances which are dominated by one component. (No
attempt to fit several overlapping resonances, by virtue
of a large number of parameters, has been done in the
present work). There are altogether 84 states with defi-
nite �-values, out of a total of 183 identified resonances,
and there are some 40 additional ones in the high-energy
data [29]. Examples of experimental angular distributions
are displayed in fig. 4, in which the corresponding squared
Legendre polynomials are included.

It is readily seen that many resonances clearly are dom-
inated by one single �-value (which fact also substantiates
the peak-fitting analysis described above), whereas some
contain interfering �-values. Since one state can have only
one angular momentum, this implies that all those “single
resonances” that show interference indeed must be made
up from at least two individual, overlapping states. This,
in fact, means that the number of states in the energy
region of study is larger than the number of “identified”
states, 183. The excitation function at backward angles
(173◦), and deduced �-values, is shown in fig. 5 for the
energy region Elab = 6.8–18.9 MeV. For each angular mo-
mentum there are some 10 states or more with indicated
�-value in table 1, the widths of which are between 20 and
80 keV, as deduced from fits in the spectra.

2.4 Width analysis of “doorway states”

The elastic-scattering amplitude, f(θ), for scattering of
alpha-particles by 28Si can the be written

f(θ) = fC(θ) + fN(θ), (2)

where fC is the Coulomb amplitude, and fN(θ) is the nu-
clear scattering amplitude, given by

fN(θ) =
i

2k

∑
�

(2�+ 1)e2iα�(1− S�)P�(cos θ). (3)

In this expression α� is the relative Coulomb phase, S� the
scattering matrix element and P�(cos θ) a Legendre poly-
nomial of order �. The differential cross-section is then
dσ/dΩ = |f(θ)|2, and includes the interference of the nu-
clear and the Coulomb scattering amplitudes. The scatter-
ing matrix element S� can be written S� = η�e2iδ� , where
η� is the reflection coefficient, and δ� the nuclear phase
shift.

For a resonance at E = ER we have δ� = π/2, and
cot δ� can be expanded in a Taylor series, and close to
resonance we have [30]

i

2
(1− S�) ∼ Γ/2

(E − ER)− iΓ/2 , (4)
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Table 2. Doorway states with spins Jπ. The columns give the summed alpha widths Γα and reduced widths γ2
α, the relative

widths vs. the Wigner limit ΓW, Σγ2
α/Γ 2

W, the centroid ε0 (from a fit using expression (6)), the escape width Γ ↑ and the
spreading width Γ ↓.

Jπ ΣΓα Σγ2
α Σγ2/Γ 2

W ε0 Γ ↑ Γ ↓

(keV) (keV) (MeV) (MeV) (MeV)

3− 322 150 0.24 7.75± 0.01 0.32± 0.01 0.88± 0.02
4+ 222 114 0.18 8.66± 0.01 0.34± 0.01 0.65± 0.01
5− 404 217 0.35 10.20± 0.02 0.39± 0.03 1.63± 0.08
6+ 283 220 0.36 11.10± 0.01 0.29± 0.03 1.06± 0.05
7− 273 224 0.36 13.20± 0.05 0.45± 0.04 1.84± 0.08
8+ 227 250 0.41 15.00± 0.02 0.41± 0.03 2.07± 0.09
9− 108 118 0.19
10+ 25 51 0.08

Fig. 6. Reduced widths γ2
α for fragments with the same spin,

assuming an underlying doorway state, plotted as a function
of energy. The solid lines in the graphs are fits to a Lorentzian
shape, eq. (6). Note the non-linear behavior of the tails, which
is due to the changing penetrability factor P (a). See table 2
for numerical values.

where Γ is the width of the resonance. If other reaction
channels than elastic scattering are open, Γ in the numera-
tor is replaced with the alpha width Γα. When this expres-
sion is inserted in (3), the expression for dσ/dΩ = |f(θ)2|
takes the form given in (1). The decay width Γα is re-

lated to the reduced width through Γα = 2P (a)γ2α(a) [31],
where P (a) is the penetrability at channel radius a. The
radius value a = 5.4 fm was used throughout. The re-
duced width γ2α is often expressed as a dimensionless re-
duced width θ2α(a) using the single-particle or Wigner
limit γ2W = 3

2 (�
2/µa2), that is

θ2α(a) =
2µa2

3�2
γ2α. (5)

If the ratio θ2α is close to unity, the state is interpreted as
being an α-cluster state [32], i.e. a state containing most
of the strength for that particular �-value. The reduced
widths γ2α are plotted in fig. 6.

If the observed “fine structures”, i.e. groups of narrow
states with the same �-values, are due to some kind of
doorway state split into fragments, the individual alpha
widths Γα should sum up to the escape width Γ ↑ of this
underlying doorway state [33], and the reduced widths
should add up to the total width. The reduced widths as
a function of energy should be given by a Lorentzian form,

γ2α =
d

4π P (a)
Γ ↑Γ ↓

(Elab − ε0)2 + 1
4 (Γ

↓)2
, (6)

where d is the (mean) distance between the fragments,
and ε0 is the energy of the doorway state. The factor Γ ↓
is called the spreading width, or decay width of the res-
onance, or doorway state. The distance d is assumed to
be a constant for a given state, and d = 200 keV is used
for the mean distance of analyzed states in table 1. The
widths of the Lorentzian distributions of states with the
same �-value were fitted with the expression (6), and the
fits are shown in fig. 6. From these calculations the values
of the escape and spreading widths, Γ ↑ and Γ ↓, could be
deduced. The numerical results of the width analyses are
shown in table 2. It should be carefully remarked, however,
that the values obtained only may be used as guide-line
values. As pointed out earlier, half of the states do not
have assigned �-values, and additional (broad) states may
still be missed, especially towards higher energy. The gen-
eral expected trend of these states is described in figs. 22
and 23 of ref. [34]. The question about missing states and
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their influence in conclusions will be re-addressed in sub-
sect. 3.2 below.

In table 2 it should be especially noted that the sum
of the reduced widths normalized to the Wigner limit,∑
γ2α/γ

2
W, reaches almost 50% in some cases. In view that

we have not been able to determine the total strengths,
that is, almost half of the resonances are without assigned
�-values, these values may well add up closely to 1. This
is a clear indication that the states may be interpreted to
be of α-cluster nature. One should carefully note, though,
that the Wigner limit is fairly loosely defined. A change
in the channel-radius value by some 20% changes the ex-
hausting by almost 50%. However, the general picture is
relatively clear.

3 Discussion

3.1 Potential analysis of the excitation function

The interaction between a particle and a nucleus is usu-
ally described by a local central complex optical potential.
The real part is often parametrized with a Woods-Saxon
form factor, or a W-S squared, for both real and imaginary
parts. In the present work the potential is parametrized
according the prescription of [35,36], who obtained a
“universal potential” by fitting to data of α+ 16O and
α+ 40Ca. This potential U(r) has a squared Woods-Saxon
shape

U(r) = −V f(r,RV , aV )−W f(r,RW , aW ) (7)

where the form factors are given by f(r,Ri, ai) = 1/[1 +
exp(r − Ri/ai)]2, where the indices are i = V,W for the
real and imaginary parts, respectively. The best parameter
values for the present elastic α+ 28Si data, obtained from
fits to angular distributions, were determined to be V =
192.4(1 − 0.00173Eα),W = −3.35(1 − 0.020Eα), RV =
1.45, RW = 1.65, aV = 1.2 and aW = 1.0, in units of
MeV and fm. Note, thus, the energy dependences of the
potential depths.

Figure 7 shows the excitation function calculated for
the backward angle 173◦, together with the measured
data. As can be seen, there is generally good agreement for
the overall behavior from about 6.5 to 19 MeV. However,
as expected, the potential approach fails to reproduce the
fine details. Included is also a curve obtained by smoothing
the experimental data with a Gaussian of 400 keV width.
Although the averaging is coarse from a statistical point of
view there is still much structure in the smoothed curve,
indeed, the structure disappears only for a smoothing of
about 2 MeV. Thus the origin of the fine structures may
be of non-statistical origin [27].

When the Woods-Saxon potential above is used to cal-
culate the elastic-scattering cross-section vs. angle, one ob-
tains a matrix like that shown in fig. 8. It is clearly seen
that the structures are much broader in energy than those
shown in fig. 3, which fact is reflected also the theoreti-
cal excitation function in fig. 7. The matrix is calculated

Fig. 7. Theoretical excitation function (full line) calculated
with the potential form described in the text, superimposed
on the experimental data to which the parameters were fitted.
The smoothed experimental data (smoothing 400 keV) is also
shown as the broken line.

Fig. 8. Theoretical ECM × θCM matrix calculated with the
same potential as used to produce fig. 7.

from 6 to 25 MeV, but only shows a few bulges, in con-
trast to the experimentally found about 180 narrow states.
Also, even at 25 MeV the angular momentum is only 8�,
whereas experimentally the values definitely seem higher,
∼ 10–12�. The potential thus only gives a fair description
of the gross structure. In fact, the same kind of smooth-
behavior presentation has been given for, e.g., the α+40Ca
case [37]. Novel aspects of the potential description have
also been recently discussed in [38,39] for the α + 28Si
scattering.

3.2 Average dynamics

The states which have an unambiguously determined �-
value in table 1 (and fig. 5) are plotted in a phase-space
diagram, that is an E = �

2/2J [�(�+1)] graph in fig. 9. It
is quite suggestive that the states with the same �-values
group according to increasing energies with a linear de-
pendence on �(� + 1) and they are not, for one particu-
lar �-value, spread over a large energy region. This fact
is of importance since it is indicative of an average ro-
tational behavior. The states of the figure consist of the
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Fig. 9. Phase space diagram of observed states, that is, an
E = E[�(� + 1)] graph, for those states that have deter-
mined �- values in fig. 5. In addition the low-spin scattering
states from [8], and “spectroscopic states” down left from [40]
(marked with dots), are included for comparison. Due to ac-
celerator calibration uncertainties some of the 0+–3− states
of [9,40] may be the same. As is seen the moments of inertia
for the two parities are almost the same, and there is no evi-
dence for parity splitting. States marked “�” are the centroids
ε0 reported in table 2.

low-lying (ground-band) states, and the 1−–9− and the
0+–10+ groups of the present analysis. The low-spin and
low-energy levels are from [40].

The energy spectrum of a “molecular” rotational band
of states with angular momenta � is given by the well-
known expression

Erot = E0 +
�
2

2J �(�+ 1), (8)

with E0 = EB +EC being the “band head energy”, where
EB is the binding energy of the α-particle in the target
nucleus (the Q-value), and EC = 1.21Z1 Z2 [r0(A

1/3
1 +

A
1/3
2 )+0.5]−1 is the Coulomb energy. From fig. 9 the value
E0 ∼ 12.2 MeV can be extracted. If the constituents α
and 28Si are considered to be extended (non–point-like)
particles their combined moment of inertia J is calculated
given by the expression replacing their masses by their
mass numbers and their radii by the standard expression
R = r0 · A1/3. We arrive at the following expression for
the moment of inertia of the combined α + 28Si (that is,
masses A1 + A2) system, in the limit of two osculating

spheres [41]:

Jmol = 1.04r20

(
2
5
(A5/3

1 +A5/3
2 ) +A1A2

(A1/3
1 +A1/3

2 )2

A1 +A2

)

(9)
in units of �

2/MeV. For the present purpose we have used
r0 = 1.3 fm. The moment of inertia for the two con-
stituents at touching distance is then 3.28 · 10−42 MeVs2
or Jmol = 7.57 �

2/MeV, whereas for a spherical mass
with A = 32 it is 1.13 · 10−42 MeVs2, that is, Jspher =
2.59 �

2/MeV. Our experimental value, extracted from the
�(�+1) behavior of the weighted averages of the individual
states with spin �, is Jexp ∼ 4.5–5.0 �

2/MeV. This effec-
tive moment of inertia corresponds to an object that is
more elongated than the spherical one, but less than two
osculating spheres, in accordance with the intuitive pic-
ture for the present process of an α-particle located at or
in the nuclear surface.

The influence of missed states on the conclusions was
mentioned in subsect. 2.4. For a particular �-value the
widths are cut at lower energies by the penetrability, see
eq. (6), and for increasing energy the resonances become
broader, and eventually constitute a smooth background,
and in addition, at these energies members of the next
�-value begin to appear. These unobserved states should
not change the general conclusions, but they would in-
crease the number of states at higher energies for each
�-value in fig. 9.

Finally, we may turn to discuss the kR values of the
observed states. The wave number is obtained from the
mean energy within an �-group, and the interaction radius
is taken as the sum of the radii of the alpha-particle and
the core nucleus, R = (1.3A1/3 + 1.6) fm. It so turns out
that the estimated grazing angular momenta �graz = k ·R
are in good accordance with the measured ones. This fact
also suggests that the observed structures are due to a
surface phenomenon. The argument then is also in accor-
dance with the observation that with increasing energy
the next �-value appears.

3.3 Gamma-ray lifetimes

The experimental effective moment of inertia, J , of a ro-
tational band can be used to estimate (collective) γ-ray
transition rates. In the liquid-drop framework [42] the mo-
ment of inertia and the quadrupole deformation parameter
β2 are related by the expression J = β22A

7/3/400 MeV−1.
In the same way one can estimate the quadrupole tran-
sition rate B(E2), given by B(E2) = Q2

0
15
2πF (I), where

Q0 =
√

16π
5

3
4πZeR

2
0β2 is the static quadrupole moment,

and F (I) is a spin factor. Substituting these expressions
gives B(E2) = 675

2π2Z
2A−1r40 · F (I) · J e2fm4. For the

cluster band one then obtains the value B(E2)cluster =
22.4 e2fm4, for I = 8. This value can be compared to the
single-particle value, or Weisskopf estimate, for A = 32,
B(E2)s.p. = 6.0 e2fm4. The corresponding γ-ray transi-
tion rate is given by T (E2) = 1.22 · 109E5

γ · B(E2), and
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the α-particle half-life can be estimated from the expres-
sion Γα · τ ∼ �. Inserting numbers we obtain for the γ-ray
and the α-cluster half-lives:

T γ,cluster
1/2 ∼ 2 · 10−14s ; Tα,cluster

1/2 ∼ 1 · 10−18s . (10)

That is, the probability for α-emission is more than 104
times greater than that for a γ-transition.

However, a γ-branch of about 10−4 or slightly less,
should be observable with modern equipment, and in fact,
two cases of γ-ray branching are known. A first report
of this kind is given for a 10+ state of 24Mg populated
in the reaction 12C(12C,α)20Ne, at ECM = 16.45 MeV
corresponding to Eexc = 30.38 MeV [43]. Here the total
γ-branch to a number of 8+ states in the range ECM =
8.85–12.98 MeV (Eexc = 22.78–26.91 MeV), with Eγ �
6.9 MeV, is given as (1.2 ± 0.4) · 10−5. This is indeed
of the same order of magnitude as the crude liquid-drop
estimate above.

Quite recently a second case is found, see [44]. The
γ − α branching ratio of another 10+ state in 24Mg, at
Eexc = 19.2 MeV, is reported as (7 ± 3) · 10−4. The
10+ → 8+ γ-ray energy is here 5.93 MeV. Although the
two branching values agree with the rough liquid-drop
estimate, the former has a much larger branching to α-
emission, probably due to Q-value and barrier effects.

4 Summary and conclusions

It has been shown that excitation functions and angu-
lar distributions measured with the backscattering tech-
nique on a thick target give very interesting results. The
extracted level properties, excitation energies, spins and
parities, and widths in the resonance α-scattering seem
to suggest an α-cluster or quasimolecular structure in
α + 28Si. When compared to similar findings in lighter
nuclei, these results give support to the assumption that
the formation of α-cluster quasimolecular structures is a
general phenomenon in the interaction of alpha-particles
with light nuclei.
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